
COL 11(5), 050501(2013) CHINESE OPTICS LETTERS May 10, 2013

Diffraction effects in planar wave-sphere interaction
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Using the classical Mie scattering theory, we compute the energy density of an arbitrary partial wave (e.g.,
the nth order) and then determine that the interaction between an incident planar wave and a sphere of
radius a is the one between the sphere and those partial waves the order of which satisfies n 6 ka. We
also provide a simple expression to describe the diffracted wave in which the angle-dependent functions
are employed. The difference between the accurate and the approximate expressions is demonstrated by
numerical calculation.
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Light diffraction occurs when light waves pass near
the edge of an aperture or obstacle, causing waves
to appear bent around the edge and interfere with
forward-propagating light that misses the edge by a large
distance[1]. Classical diffraction theory is based on Kirch-
hoff’s approximation, which leads to a well-defined for-
mulation of the Huygens-Fresnel principle[2]. The the-
ory generates reasonable results for the diffraction pat-
terns of apertures that have dimensions much larger
than the wavelength for small diffraction angles θ, where
most of the intensity is concentrated[3]. For example,
applying the theory to a circular aperture of radius a
obtains the amplitude of the diffracted wave S(θ) =
α2 · J1(α sin θ)/(α sin θ), where α = ka is the dimen-
sionless size of the sphere and k is the wavenumber[2].
This expression is applicable only for small angles; al-
ternatively, the amplitude may be expressed as S(θ) =
1+cos θ

2 α2J1(α sin θ)/(α sin θ)[4] or as a matrix with the
different polarization configurations of the diffracted
wave[5]. The latter expressions can be applied for
backward-propagating diffracted waves (for diffraction
angles larger than 90◦) because of the angular fac-
tor cos θ. The differences between these expressions
are attributed to the approximations generated during
deduction. Studies on diffraction have recently been
published[6,7]. We revisit diffraction effects by using the
classical Mie scattering theory and then demonstrating
planar wave–sphere interaction. A simple expression is
provided to describe the diffracted wave in which angle-
dependent functions are employed. An approximate ex-
pression is obtained to verify whether the results agree
with those deduced from Kirchhoff’s approximation. Nu-
merical calculation is performed to demonstrate how the
difference between the accurate and the approximate ex-
pressions occurrs.

The classical Mie theory describes the interaction be-
tween an incident planar wave and a sphere, as shown in
Fig. 1.

In the time convention of exp(−iωt), the incident pla-
nar wave Einc = E0 exp(ikz)êx is expressed as a series of
partial waves given as
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ical harmonics[4], k(= 2π/λ) is the wave number, λ is the
wavelength, ω is the angular frequency of the wave, µ is
the magnetic permeability of the medium, and E0 is the
magnitude of the electric field. The average energy den-
sity of an arbitrary partial wave (say the nth order) is
given as[8,9]
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where ε is the electric constant of the medium, ψn(ρ) is
the Riccati–Bessel function of the 1st kind (the argument
is ρ = kr) and ψ′

n(ρ) is its derivative. πn(θ) and τn(θ)
are the angle-dependent functions defined as

Fig. 1. Interaction between an incident planar wave and a
sphere.
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d
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where P 1
n(cos θ) is the associated Legendre function.

Equation (5) indicates that the energy density of the
partial wave is axially symmetric around z-axis. The
numerical results of the energy density of the partial
wave are plotted in the yz plane, as shown in Fig. 2,
in which the orders of the partial wave n are 500 and
1 000. The calculation method used in this letter is based
on a procedure applied in a previous study[8,9]. For the
partial wave of n, the energy is mainly distributed in
the region ρ = kr > n, which suggests that the nth
partial wave does not reach the region ρ = kr < n.
Therefore, the interaction between an incident planar
wave and a sphere of radius a is the same with that be-
tween the sphere and those partial waves the order of
which satisfies n < α = ka. By contrast, the partial
waves of n > α = ka do not interact with the sphere.
This result agrees with the localization principle given
by Hulst[10]. According to the localization principle, the
term of the order n corresponds to a ray passing through
the origin at a distance (n+ 1/2)/k, and the terms with
n + 1/2 6 α = ka correspond to all rays reaching the
sphere. In the view of quantum mechanics, the wave-
length of a photon is λ = h/p, where h is Planck’s con-
stant and p is the momentum. For the sphere with the
radius a, the angular momentum nh/2π must not exceed
pa, thus setting the condition n 6 2πa/λ = α. Given
that the order of the partial wave n is discrete and the
size parameter α changes continuously, n 6 α − 1/2 in
the average may be chosen. The discussion above also ex-
plains the criterion of the stopping order in Mie scattering
calculation given by Wiscombe et al., which includes the
edge domain[11−13].

According to the Debye series expansion of Mie scat-
tering, the scattering field can be considered as the in-
terference involving three parts: the diffracted light,
the light reflected by the incident ray on the surface
of the sphere, and the light wave with multiple internal
reflections[13−15]. The diffracted wave can be expressed
as
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where ns = int(α− 1/2). M
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are the vector spherical harmonics, which describe the
outward wave in the time convention of exp(−iωt)[4]. In
the far-field diffraction limit, Eq. (8) can be simplified
as

Ediff = −
exp(iρ)
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êdiff = cosφêθ − sinφêφ, (12)

where S is the amplitude function describing the
diffracted wave. The expression above indicates that the
far-field diffracted wave is transversal and linearly polar-
ized, with its intensity given as

Idiff =
1

ρ2
I0|S|

2, (13)

where I0 is the intensity of the incident planar wave. By
using the recurrence of the angle-dependent functions[4],
Eq. (11) may be further simplified to

S(θ) =(1 + cos θ)πns
(θ) −

1
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πns
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−
1

2
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Deduced from the Debye series expansion of Mie scatter-
ing theory, Eq. (14) can accurately describe diffraction.
For large spheres (i.e., ns ≫ 1), the angle-dependent
function satisfies πns−1(θ) ≈ cos θπns

(θ) in the range
α sin θ < 10. Thus, Eq. (14) may be approximated to

S(θ) ≈
1 + cos θ

2
πns

(θ). (15)

Applying the approximation of the angle-dependent func-
tion πns

(θ) ≈ n2
s+J1(ns+ sin θ)/ns+ sin θ (here ns+ =

ns + 1) to Eq. (15), we obtain

S(θ) ≈
1 + cos θ

2
n2

s+ ·
J1(ns+ sin θ)

ns+ sin θ
. (16)

If ns+ is replaced by α, the approximate expression
of the diffraction given in Eq. (16) coincides with
the one obtained from the scalar diffraction theory by
Bohren et al.[4]. Although the relationship πns−1(θ) ≈
cos θ · πns

(θ) exists in both the forward and backward
directions, the approximation of Eq. (15) may cause
big errors in the backward direction because the factor
(1 + cos θ)/2 tends to approach 0, which is the same
case as Eq. (16). Therefore, the approximations in Eqs.
(15) and (16) can yield good results only in the range
θ < arcsin(10/α).

The approximation from Eqs. (15) and (16) exists in
the range of forward directions (i.e., α sin θ < 10 and
θ < 90◦). Comparison between the numerical results
calculated using Eqs. (14), (15), and (16) is given in Fig.
3. The diffraction of light is expressed as |S(θ)|2 for the
sphere with the size α = 30. In the range θ < 19.5◦,
the result obtained from Eq. (15) is in agreement with
that obtained from Eq. (14), as shown in Fig. 3(a). In all

Fig. 2. (Color online) Distributions of the energy density
of the partial waves for (a) n = 500 and (b) n = 1000.
Y = ρ sin θ and Z = ρ cos θ.
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Fig. 3. (Color online) Comparison of diffracted intensity

|S (θ)|2 calculated using Eqs. (14), (15), and (16), with
α = 30 and ns = 29.

 

Fig. 4. (Color online) Comparison of the results calculated
with Eqs. (14), (17), and (18), with α = 30 and ns = 29.

ranges of diffraction angles, both curves oscillate uni-
formly with the variation in the diffraction angle; how-
ever, the frequency of oscillations vary. This difference
is attributed to the oscillation of the angular-dependent
function πns

(θ) at a frequency that is dependent on the
order. Thus, the approximation πns−1(θ) ≈ cos θ · πns

(θ)
changes the oscillating properties. In addition, as the
diffraction angle increases, the results increasingly devi-
ate from each other.

The results obtained from Eqs. (14) and (16) agree
well in the forward direction (i.e., θ < 19.5◦) and de-
viate increasingly from each other with the increase in
the diffraction angle. In addition, the curve defined
by Eq. (16) oscillates rapidly in the ranges in for-
ward and backward directions and oscillates slowly in
the vicinity of θ = 90◦ because of the approximation
πns

(θ) ≈ n2
s+ · J1 (ns+ sin θ)/(ns+ sin θ). This change

occurs because the angular-dependent function πns
(θ)

is related to the associated Legendre function, which is
obtained under spherical conditions, whereas the Bessel
function is obtained in the circular disk conditions. This
difference indicates that the dependence of the oscillat-
ing properties of these functions on the diffraction an-

gle varies, The oscillation properties of the diffraction
light by the diffraction angle can be modified by sub-
stituting J1 (ns+ sin θ)/(ns+ sin θ) with J1 (ns+θ)/(ns+θ).
In addition, the associated Legendre function describes
the standing wave in the sphere, and the Bessel func-
tion describes the standing wave in the circular disk.

In the range of θ ∈ [0, π), πns
(θ) ∝ (2π sin θ)

−
1

2 , and
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−

1

2 . Thus, the approximation
πns
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s+ · J1 (ns+ sin θ)/(ns+ sin θ) above can be

modified to πns
(θ) ≈ n2

s+ · (θ/sin θ)
1
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An equation corresponding to Eq. (16) can be written as
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. (17)

The numerical result is shown in Fig. 4(a) for compari-
son with the one calculated using Eq. (14). The result
in Eq. (17) deviates from that in Eq. (14) for large
diffraction angles because of the approximation derived
from deducing Eq. (15) from Eq. (14). Therefore, by
simply omitting the factor (1 + cos θ)/2, the expression
can be rewritten as

S (θ) ≈ n2
s+

(
θ

sin θ

) 1

2 J1 (ns+θ)

ns+θ
. (18)

To a certain extent, Eq. (18) is equivalent to the expres-
sion given by Nussenzveig et al. from the semi-classical
diffraction theory[3,14−16]. As shown in Fig. 4(b), the nu-
merical result of Eq. (18) matches well that of Eq. (14),
except for the angles very close to θ = 180◦, wherein the
θ/sin θ value tends to be infinite. The excellent consis-
tency between the results of Eqs. (14) and (18) implies
that the omission of the factor (1 + cos θ)/2 compensates
for the approximation in Eq. (15).

Numerical calculations for Eqs. (14), (17), and (18) are
performed with different size parameters, which exhibit
the same characteristics as those in Figs. 3 and 4. The
results of Eqs. (14) and (18) remain in agreement when
the size parameter is set to as low as α = 5.

Finally, although Eq. (14) is derived rigorously from
the Debye series expansion of Mie scattering, the equa-
tion cannot reflect the slight change in α. For example,
the maximal order ns = 29 remains unchanged for all
particle size parameters in the range of α ∈ [29.5, 30.5).
The midpoint of the range is ns+ = 30. With this con-
sideration, Eq. (18) can be further modified to obtain

S (θ) ≈ α2 ·

(
θ

sin θ

) 1

2 J1 (αθ)

αθ
. (19)

In conclusion, the diffraction of a planar wave by a
sphere is discussed from the perspective of the classical
Mie scattering theory. In the first step, the planar wave is
considered an interference of partial waves with different
orders. The distribution of the field energy of a partial
wave is calculated. The calculation determins that only
partial waves with orders lower than the dimensionless
size of the sphere (i.e., n < α) contribute to the inter-
action between the planar wave and the sphere. In the
second step, the expression for diffraction light is deduced
from the Debye series expansion. The far-field diffracted
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wave is found to be transversely and linearly polarized.
Finally, different approximations of the diffraction light
are obtained , i.e., Eqs. (15)–(19), and compared with
those obtained from scalar diffraction theory and semi-
classical diffraction theory. Numerical calculations with
these approximations are plotted, hence, the comparison
with the rigorous calculation obtained from Mie theory
(i.e., Eq. (14)). Among these approximations, Eqs. (18)
and (19) provide the most accurate results, except for
angles that are very close to θ = 180◦.

We explain light diffraction from interactions between
partial waves and a sphere. The approximation obtained
may be applied in geometrical optics approximation of
light scattering[5,17,18] and other areas.
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